What is claimed is:

- 1. A semiconductor structure comprising a high-k material metal gate structure and a semiconductor gate structure,
 - wherein said high-k material metal gate structure includes: a high dielectric constant (high-k) material portion having a dielectric constant greater than 8.0 and located on a semiconductor substrate;
 - a metal gate portion comprising a metal and vertically abutting said high-k material portion; and
 - an oxygen-impermeable dielectric spacer laterally abutting sidewalls of said high-k material portion and said metal gate portion;
 - and wherein said semiconductor gate structure includes:
 - a semiconductor oxide containing gate dielectric portion having a dielectric constant less than 8.0 and located directly on said semiconductor substrate;
 - a doped semiconductor portion comprising a doped semiconductor material and vertically abutting said gate dielectric; and
 - a low-k gate spacer comprising a dielectric material having a dielectric constant less than 4.0 and laterally abutting sidewalls of said semiconductor oxide containing gate dielectric portion and said doped semiconductor portion.
- 2. The semiconductor structure of claim 1, wherein said high-k material portion further includes a chemical oxide portion vertically abutting said high-k material portion and said semiconductor substrate and comprising an oxide of a semiconductor material of said semiconductor substrate.
- 3. The semiconductor structure of claim 1, wherein said oxygen-impermeable dielectric spacer has an L-shaped vertical cross-sectional area and vertically abuts said semiconductor substrate.
- **4**. The semiconductor structure of claim **1**, further comprising another low-k gate spacer abutting said oxygen-impermeable dielectric spacer.
- 5. The semiconductor structure of claim 1, wherein said oxygen-impermeable dielectric spacer comprises silicon nitride.
- **6**. The semiconductor structure of claim **1**, wherein said low-k gate spacer comprises silicon oxide.
- 7. The semiconductor structure of claim 1, wherein said low-k gate spacer comprises a low-k dielectric material having a dielectric constant less than 2.8.
- **8**. The semiconductor structure of claim **1**, wherein said high-k material portion comprises one of HfO_2 , ZrO_2 , La_2O_3 , Al_2O_3 , TiO_2 , $SrTiO_3$, $LaAlO_3$, Y_2O_3 , HfO_xN_y , ZrO_xN_y , $La_2O_xN_y$, $Al_2O_xN_y$, TiO_xN_y , $SrTiO_xN_y$, $LaAlO_xN_y$, $Y_2O_xN_y$, a silicate thereof, and an alloy thereof, wherein each value of x is independently from about 0.5 to about 3 and each value of y is independently from 0 to about 2.
- **9**. The semiconductor structure of claim **1**, wherein said metal gate portion comprises one of TiN, ZrN, HfN, VN, NbN, TaN, WN, TiAlN, TaCN, W, Ta, Ti, other conductive refractory metal nitrides, and an alloy thereof.
- 10. The semiconductor structure of claim 1, wherein said high-k material metal gate structure further includes a second doped semiconductor portion comprising a doped semiconductor and vertically abutting said metal gate portion.

- 11. The semiconductor structure of claim 10, wherein said semiconductor gate structure further includes a third doped semiconductor portion comprising said doped semiconductor and vertically abutting said doped semiconductor portion.
- 12. The semiconductor structure of claim 11, wherein said third doped semiconductor portion and said doped semiconductor portion comprise different materials.
- 13. A method of forming a semiconductor structure comprising:
 - forming a first gate structure and a second gate structure on a semiconductor substrate, wherein said first gate structure includes a high dielectric constant (high-k) material portion having a dielectric constant greater than 8.0, and wherein said second gate structure includes a semiconductor oxide containing gate dielectric portion having a dielectric constant less than 8.0;
 - forming an oxygen-impermeable dielectric layer over said first gate structure and said second gate structure; and removing a first portion of said oxygen-impermeable dielectric layer over said second gate structure, while protecting a second portion said oxygen-impermeable dielectric layer over said first gate structure.
- 14. The method of claim 13, further comprising forming a low-k spacer having a dielectric constant less than 4.0 directly on sidewalls of said second gate stack and said second portion of said oxygen-impermeable dielectric layer.
- 15. The method of claim 14, further comprising forming another low-k spacer having a dielectric constant less than 4.0 directly on sidewalls of said oxygen-impermeable dielectric layer over said first gate structure.
- **16**. The method of claim **14**, further comprising etching said second portion of said oxygen-impermeable dielectric layer to form an oxygen-impermeable dielectric spacer.
- 17. The method of claim 16, wherein said oxygen-impermeable dielectric spacer comprises silicon nitride and has an L-shaped cross-sectional area.
- 18. The method of claim 13, wherein said first gate structure further includes a metal gate portion comprising a metal and vertically abutting said high-k material portion, and wherein said second gate structure further includes a first doped semiconductor portion comprising a doped semiconductor material and vertically abutting said semiconductor oxide containing gate dielectric portion.
- 19. The method of claim 18, wherein said first gate structure further includes a chemical oxide portion vertically abutting said high-k material portion and said semiconductor substrate and comprising an oxide of a semiconductor material of said semiconductor substrate.
 - 20. The method of claim 18, further comprising:
 - forming a second doped semiconductor portion directly on said metal gate portion; and
 - forming a third doped semiconductor portion directly on said first doped semiconductor material portion, wherein said second doped semiconductor portion and said third doped semiconductor portion have an identical composition.

भ भ भ भ